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Convection in a porous cavity driven by heating in the horizontal is analysed by a 
number of different techniques which yield a fairly complete description of the two- 
dimensional solutions. The solutions are governed by two dimensionless parameters: 
the Darcy-Rayleigh number R and the cavity aspect ratio A. We first find solutions 
valid for shallow cavities, A --f 0, by using matched asymptotic expansions. These 
solutions are given u,p to O(A6R4). For d fixed, we find regular expansions in R by 
semi-numerical techniques, up to O(R30) in some cases. Series-improvement techniques 
then enable us to cover the range 0 < R < co. A limited result regarding bifurcations 
is noted. Finally, for R -+ co with A fixed, we propose a self-consistent boundary-layer 
theory which extends previous approximate work. The results obtained by these 
different methods of solution are in good agreement with each other and with 
experiments. 

1. Introduction 
This work is concerned with the problem of natural convection in a cavity which 

encloses a Darcy medium. The cavity is heated differentially in the horizontal, and the 
goal of oiir analysis is to provide as complete a description as possible of the A ow and 
heat transport across the cavity as a function of the parameters of the problem. We 
consider here only steady two-dimensional solutions to  the governing equations; 
questions of bifurcation and instability are not treated in any depth. 

Convection in porous spaces has been intensively studied over the past few years, 
most of the effort being focused on the instability problem related to uniform heating 
from below. See, for example, Horne & O’Sullivan (1 974), Caltagirone (1 975), Straw 
(1974) and the review article by Combarnous & Bories (1975). Substantially fewer 
studies have been made of the present problem. Weber (1 975) has presented an approxi- 
mate boundary-layer analysis and there have been some numerical solutions of 
questionable accuracy: Bankvall (1 974), Holst & Aziz (1 972) and Chan, Ivey & Barry 
(1970). We shall discuss these in 5s 5 and 4 respectively. To our knowledge, there has 
only been one experimental study which has probed the internal details of the tem- 
perature field in a porous cavity. This was done by Klarsfeld (1970), who was able to 
exploit an interesting technique by which isotherms in a normally opaque medium 
may be determined by a selective match of the index of refraction between the fluid 
and the solid medium. There appears, then, to be a gap in our understanding of the 
convective t’ransport of energy in a porous space heated differentially in the horizontal. 
The present work seeks to fill that gap in several important respects. 

I n  the next section we state the particular boundary-value problem facing us, and 
make some comments regarding the validity of some basic assumptions in the writing 
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of the field equations for porous media. The problem which arises is simple in the sense 
that it is fully characterized by the aspect ratio of the cavity, denoted by A ,  and the 
Darcy-Rayleigh number R. The subsequent sections treat the problem by perturbation 
theory in the limits of long narrow cavities and low Rayleigh number respectively. 

The first case, that of small A with R fixed, results in a problem in matched asym- 
ptotic expansions. It is possible to obtain a simple parallel flow solution, valid far from 
the vertical walls of the cavity, which contains one unknown constant related to the 
temperature gradient in the core and therefore to the N’usselt, number. The evaluation 
of this constant, and hence the solution to the problem, depends on an analysis of the 
turning flow which takes place near the vertical boundaries of the cavity. We pursue 
these calculations to one more order in the small parameter A than we are able to 
evaluate analytically, O(A6).  Results up to sixth order are then provided by a numerical 
calculation from a later section. 

The next section treats the problem for A = 0(1), by regular expansion in R about 
the state of pure conduction. This approach leads to a series of Poisson problems a t  
each order of the expansion and these are solved sequentially by a semi-numerical 
method. We focus most of our attention on the resulting series for the Nusselt number. 
It is found to have only a finite radius of convergence owing to branch cuts in the 
complex plane which are of no physical significance. Using a variety of techniques 
common in the physics literature (see, for example, Gaunt & Guttman 1974)  and 
popularized in the fluid-mechanics literature by Van Dyke ( 1 9 7 4 )  and others, it  is 
possible to extend the range of validity of the series over the entire range of Rayleigh 
numbers 0 < R 6 03. It is, however, difficult to make this extension accurately, and 
we discuss some of the problems associated with techniques of this kind. The fifth and 
final section considers the boundary-layer limit for R --f 03 with A fixed. It is shown, 
by a partial analysis of the horizontal boundary layers, that the approximations due to  
Gill ( 1 9 6 6 )  and Weber ( 1 9 7 5 )  can be justified and that the conventional vertical 
boundary -layer equations may be integrated in a straightforward manner. Requiring 
that these solutions satisfy a consistency relation with the horizontal layers allows us to 
determine, among other things, the temperature profile along the midplane of the cavity. 

2. Basic equations 
The problem under study is steady two-dimensional natural convection in a 

rectangular cavity containing a Darcy medium. The two vertical surfaces are held at  
fixed but different temperatures and the horizontal surfaces are taken to be perfectly 
insulating. The momentum boundary conditions are no mass flux through the 
boundaries. We take the cavity to be of height H and length L,  with a co-ordinate 
system (x, y) centred at  the lower left corner. The governing dimensionless equa- 

tions are V z $  = Rex, (2.1 a )  

v2e = +, e x  - kCey, (2 .1  b )  

with the conditions $ = O  on x = 0 , 1 ,  ( 2 . 2 ~ )  

$ = 0  on y = O , A ,  ( 2 . 2 b )  

O = x  on x = O , 1 ,  ( 2 . 3 ~ )  

e , = o  on y = O , A .  ( 2 . 3 b )  
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In these equations the subscripts denote partial differentiation. t/. is a stream function 
defined such that (u, v )  = ($p - $z), and the Boussinesq approximation has been used 
in writing the momentum equation (2 . la) .  Lengths have been scaled by L, velocities 
by KIL and temperatures by the imposed temperature difference AT. The resulting 
problem contains two dimensionless parameters: the aspect ratio A = H / L  and the 
Darcy-Rayleigh number R = gaATkL/vK ( k  is the permeability of the medium; all 
other symbols have their usual meaning). We shall have occasion to use also the 
Rayleigh number RH = gixATkH/vK = RA based upon the cavity height. 

Solutions to this problem are of some interest for very large values of R. However, 
it  is important to note that the porous-media equations (2.1) and (2.2) are invalid for 
sufficiently large R. Thus the physical applicability of asymptotic solutions to (2.1) and 
(2.2) valid as R -+ 00 is sometimes questionable. There are several reasons for this. 
Since the permeability k is usully small, a large R often corresponds to a large tempera- 
ture difference. The variation of fluid properties, especially the viscosity, then becomes 
quite important; see, for example, Kassoy & Zebib (1975). More important, the Dsrcy 
assumption becomes invalid when the heating is so strong that the flow on the micro- 
scale is no longer inertialess. This effect can be assessed quantitatively if the solution 
of (2.1) and (2.2) is coupled with a knowledge of the pore size of a given medium; see, 
for example, Palm, Weber & Kvernvold (1972). Finally, when the flow is predicted 
to have a boundary-layer structure, solutions become invalid when rapid variations 
occur over distances of the same order as the pore size or inter-particle spacing. Thus 
we shall treat (2.1) as a model system and determine solutions to the stated mathe- 
matical problem, which represents a valid approximation to  the actual physical system 
provided that the above considerations are noted. 

3. The long shallow cavity 
In  this section we consider the case A -+ 0 with R fixed. The treatment is similar 

in many respects to that given for a viscous Boussinesq fluid by Cormack, Leal & 
Imberger (1 974). As the aspect ratio approaches zero one expects the resistance forces 
in the centre portion eventually to dominate the flow structure over most of the cavity. 
Physically this corresponds to a region of dimensional length O ( L )  of slow nearly 
parallel flow in the core and a temperature profile only weakly dependent on y, the 
vertical co-ordinate. The flow then turns through 180" in the end regions. The existence 
of two different regions with different characteristic horizontal length scales, O(L)  in 
the core and O ( H )  at the ends, suggests a matched asymptotic expansion in the aspect 
ratio A .  

It is convenient, then, to work with a set of dimensionless variables scaled in a way 
which reflects these general expectations. In the core, i.e. the region removed from 
vertical boundaries, we scale ywith H ,  x with L and $with A2RK/L. It is furthermore 
advantageous to base the Rayleigh number on the height: RH = AR. With these 
scalings, the core field equations become 

%$, = e c x ,  (3.1 a )  

'5 ' c  = ($w ecz - $cx 'ccy), (3.1 b)  

(3.1 c) 

$, = O,, = 0 on y = 0 , 1  (3.1 d )  

05 = a 2 / a y 2  + ~2 a 2 / a x 2 ,  

with 
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and conditions, to be determined below, matching the core solution to solutions valid 
a t  the ends of the cavity. These equations admit a parallel flow solution $ = $Jy) 
of the form 

$AY) = $C(Y2-Y), (3.2) 

(3.3) 

Here C and D areunknown constants ofintegration. (These solutions may be developed, 
as in Cormack et al. (1974), by expansion in A.  They are simply recorded here.) The 
parallel flow solution is, of course, not uniformly valid, and must be corrected in the 
corner regions by fields which allow the flow to turn. The details of the turning flow, 
together with matching conditions, will determine the constants C and D. Before 
proceeding, it is advantageous to eliminate the constant D in favour of C. This may be 
done if the core temperature is specified at  any point (x, 9). We appeal to the invariance 
of the governing equations to double reff exions about diagonals passing through the 
centre of the cavity (the so-called ‘centro-symmetry’ of the problem; Gill 1966) to 
conclude that S,(&, Q) = &. From this relation we find 

O,(X, 9) = {CX + D + QRH A2C2(Qy3 - $@),). 

and therefore O,(x, y)  = {&(I -C)+Cx+QR,A2C2($y3--Qy2+&)}. (3.4) 

Thus the core solution is given by (3.2) and (3.4) in terms of a single unknown constant 
C, to be determined by matching. We assume the following asymptotic expansion for C: 

C(R, A )  = Co(R) + AC,(R) +i42C2(R) + . . . as A 3 0 with R fixed. (3.5) 

This choice of gauge functions is justified if it is possible to obtain proper matching 
with the end regions. 

The end region at  x = 0 is now considered in order to evaluate the coefficients Ci. It is 
necessary to consider only one of the two end regions owing to the centro-symmetry of 
the problem. Thus we consider solutions (8,$) valid in the fegion 0 < x N A, 0 < y < 1 .  
For 0 < x N A,  the equations satisfied by (6, $) are 

AD2$ = 8z, ( 3 . 6 ~ )  

v28 = A R ~ ( $ &  $x8uy), (3.6b) 

subject to the boundary conditions 

(3.7U) a) 
h e , = $ = o  on y = o , i  (3.7 c )  

and the matching conditions 

Jim 8(x, y)  = lim ec(x, y), Iim &x, y)  = lim $ ~ x , y ) .  (3.7d) 

The limits in (3.7 d )  are to be interpretedin the sense of matched asymptotic expansions, 
applied to the m-term asymptotic expansion of each of the end and core variablesin the 
small parameter A .  

Solutions to the corner problems are likewise expressed as asymptotic expansions 

w m  s-0 x-+m x-0 

in A ; viz. P =  &o+A81+. . . ,  $ = $o+A$l+. . . .  
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Substitution into (3.1) and (3.2) gives the following problems for &,, Go, etc., subject to 
the homogeneous conditions (3.7a, b,  c) at each order: 

&,/ax = 0, v4,  = 0, 
A 

lirn 0, = $(l -17,); (3.9) 
X+ m J 

v2 $, = a @ , / a X ,  v2& = RH a($,, @,)p(x, Y ) , J  
(3.10) 

lim $, = BC,(YZ- y ) ,  lim O1 = (c, x - iCl); 
x-+ w X+ w 

(3.11) i Wl = a&&, v2@2 = R H [ @ , ,  $1)p(x,  Y )  +a(& $,)I% Y ) l ,  

Iim = g ~ , ( y 2 - y ) ,  lim O2 = C , X - ~ C , + $ R , C ~ ( ~ Y ~ - B ~ ~ + ~ ) .  

The first two temperature functions may be obtained by inspection. Thus, since 
matching at  each order gives the constants C,, C,, . . . , 8, = 0 yields C, = 1 and 8, = x 
yields C, = 0. 

The constant C, may be evaluated by a symmetry argument. First, from (3.10), Go 
will be a symmetric function of y .  However G2 will contain both symmetric and anti- 
symmetric parts owing to the matching in (3.11). Letting &2 = 

x-+m X-P w 

+&% gives 
h 

(3.12) 

(3.13) 
v2tl2, = 0, lim 0% = - &',, 

e,=o on x = o ,  a O , p Y = o  on y =  0 , 1 .  

Equations (3.13) have the solution &2s = 0, with the consequence that C, = 0. A similar 
argument may be used to show that C, = 0. 

i V2%A = $ow 
A 

lim = ~ R , ( ~ Y ~ - $ Y ~ + + ~ ) ,  
X+CC 

A 

x-+ w 

A 

The solutions for $,, and O2 are 

(3.14) 

6, = 8z2A = $RH(+y3-$y2+ib)-RH (x+L) ~ o s ( n n y ) e - ~ ~ ' .  (3.15) 
nodd B3n3 n4v4 

Knowledge of the solution thus far allows determination of the constant C,. The 
problem for 8, is v24  = REl[a$l/aY + a(&,, @ o ) / W ,  Y)JJ 

A 

lime, = - BC,, 

&,lay = o on y = 0,1,  

x-+w 

&,= o on x = 0. 

The constant C, is clearly related to the part of 6, which is even in y .  Letting 

z(x) = 1,' &3dy, 

one can show that 
30 

C, = - 2  lim z(x) = - R 2  - n-7 2 -9.9374921 x lO-,R%. 
,x+w 717 nodd 

(3.16) 
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All the higher-order ck are also related to the symmetric parts of the @k, and it is 
possible to show by the same methods that 

C5 = O(R&), (7% = 3C32, C, = O(R%), Cs = 8C3C5 

and so on. Knowledge of an odd c k  immediately gives the next even ck. 
It is difficult to proceed analytically beyond the present results, i.e. beyond C,. We 

wish to use these results to calculate an asymptotic expansion for the Nusselt numbert 
valid for A --f 0 with R fixed. One method of doing this is a direct evaluation of the 
flux from the wall at x = 0, as in Cormack et al. (1974), viz. 

We choose instead a rather simple method which relies on the fact that the horizontal 
walls are insulated, and hence the flux across any vertical cross-section is constant. In  
particular, this flux may be calculated directly from the core solution as 

(3.17) 

Using (3.4) and (3.6), we find 

NU = AC[1 +&R&AZCz]. (3.18) 

Equation (3.18) is exact for any aspect ratio for which the parallel flow solution is 
valid: this implies A < 1, since tall cavities cannot be expected to have this simple core 
solution. Knowledge of the constant C, or its expansion in A ,  completes the solution. 
Evaluating this expression up to O(A6), with 

C = 1 +A3R& e3 + R$ A5(8,  + 3632A) + O(A'R9,  

we find 
NU = A [ 1 + A2R&(&j + 0 3 A  ) + A5&&(C5 + &C3 + 3832.4 ) + O(A ') 1. (3.19) 

Note that we have used the relation C, = 3C32, and have written C, = e3R&, 
0, = - 9.9374921 x lo-, and C5 = e5Rh. We are a t  present unable to evaluate e5 
analytically. We shall return to this in $ 4.6, where we evaluate numerically. 

4. Convection for A = O( 1) : solution by regular expansion in R 
4.1, The expansion 

We return to the problem stated in $2,  viz. (2.1)-(2.3). It is possible to solve these 
equations as a regular expansion in R, i.e. 

t Note that here and throughout this paper the Nusselt number is based on the height H ,  i.0. 
NU = p H / k A T .  
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It is trivial to show that 00 = x and $0 = 0. Thus the expansion is about the state of 
simple conduction. The expansions (4.1) lead to a sequence of Poisson problems for the 
successive @(x, y) and p ( x ,  y): 

Q 2 P  = 0i-1, ( 4 . 2 ~ )  

I) 

(4.2b) 

( 4 . 2 ~ )  

These Poisson problems may be solved in a variety of ways:t we have chosen 
a Galerkin method using truncated spectral representations, viz. 

N M  

n = O m = l  
&(x, y) = C 2 @;, sin (mnx) cos (nny/A), ( 4 . 3 ~ )  

N M  

n = i m = l  
p ( x ,  y) = C 3 pm, sin (mnx) sin (nny/A). (4.3b) 

The matrices of the coefficients O%,n and Pt,, are found by requiring (4.3) to solve 
(4.2a, b )  in the sense of weighted residuals. There is a great deal of symmetry in this 
problem, which is reflected in the matrices: it is easy to show that each function 0" is 
odd (even) in x and even (odd) in y when s is an odd (even) int,eger. This implies that 
non-zero values of 8&,, occur only when m and n are either both odd or both even. 
Similar considerations apply to pm, n ,  and this symmetry was exploited in determining 
the matrices numerically. 

A double-precision Fortran program was written which evaluated these coefficient 
matrices for a given choice of M ,  N and S. It consists essentially of six nested DO loops 
for calculating the quantities Oh,, and ?m,n. 

Two quantities of primary interest are the Nusselt number, which because of the 

4s symmetry becomes 
N u = A  cnRZn (4.4) 

n=O 

(where co = l) ,  and the value of the stream function at  the cavity centre, 

which is related to the strength of the circulation in the core. From the spectral repre- 

sentations, we have M 

c, = 2 (mn)O:;o, 
m=2 

II N 

k = l 1 = 1  
en = C C $ctlsin (4.7) 

As we shall see, the accuracy of these results is of crucial importance for the utility of 
a series like (4.4) or (4.5). A discussion of accuracy is given in the appendix. The 
coefficients c, and en are given for different values of A in tables 1 and 2 respectively. 

t See appendix for discussion. 
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$8 
0 
1 
2 
3 
4 
5 
ti 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

A = l  
(20, 20) 

1.0 
8'51247 ( -  04) 

- 6.85672 ( - 07) 
9.41183 ( - 10) 

- 1'54846 ( -  12) 
2.79626 ( -  15) 

- 5'35023 ( - 18) 
1.06521 ( - 30) 

- 2'18346 ( - 23) 
4'57665 ( - 26) 

- 9'76379 ( -  29) 
2.11308 ( - 31) 

-4.62773 ( -  34) 
1.02368 ( -  36) 

- 2.28385 ( - 39) 
5.13302 (-42)  

-1~16111 (-44)  
2.64142 ( - 47) 

- 6'03925 ( - 50) 
1'38701 ( -  52) 

- 3.19836 ( -  55) 

A = 2  
(30, 20) 

1.0 
9.18364 ( -  04) 

- 8'30023 ( - 07) 
1'22260 ( - 09) 

- 2.16607 ( -  12) 
4.22836 ( -  15) 

- 8.76313 ( -  18) 
1'89164 ( -  20) 

- 4'20609 ( - 23) 
9'56555 ( -  26) 

- 2.21440 ( -  28) 
5.20053 ( - 31) 

- 1.23594 ( - 33) 
2-96677 ( -  36) 

- 7.18239 ( - 39) 
1'75165 ( -  41) 

- 4.29939 ( - 44) 
1'06125 ( - 46) 

- 2'63268 ( - 49) 
6.56022 ( - 52) 

- 1.64127 ( -  54) 

E 0  = 402.02500 Eo = 370.700 

IS 
TABLE 1. C0efficient.s of Nu = A c,RZn. 

?L=o 

A = 3  
(36, 26) 

1.0 
6.58217 ( -  04) 

- 5.19226 ( -  07) 
7.21572 ( -  10) 

- 1'23480 ( -  12) 
2'34042 ( -  15) 

-4.71414 ( -  18) 
9.89169 ( -  21) 

-2,13805 (-23)  
4.72689 ( - 26) 

- 1.06383 ( - 28) 
2.42908 ( -  31) 

- 5.61298 ( -  34) 
1.31011 ( -  36) 

- 
- 
- 

- 
- 
- 
- 

= 381.092 

$8 A = l  A = 2  A = 3  
(20, 20) (30, 20) (36, 26) 

0 7.36556 ( - 02) 1.13842 ( -01)  1.22714 ( - 01) 
1 - 8.64608 ( - 06) - 2.08049 ( - 05) - 2.14162 ( - 05) 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13  
14 
15 
16 
17 

2,41158 
- 3.64799 

6.24787 
- 1.15235 

2.23331 

9.24891 
- 1'94749 

4-16952 
- 9.04923 

1.98641 

9.83802 

5.01468 

- 4'484ti4 

- 4.40250 

- 2.21421 

- 1'14199 

- 08) 
- 11) 
- 14) 
- 16) 
- 19) 
- 22) 
- 25) 
- 27) 
- 30) 
- 33) 
- 35) 
- 38) 
-41) 
- 43) 
- 46) 
- 48) 

2'30308 ( - 08) 
- 3'64713 ( -  11) 

6.75114 ( -  14) 
- 1.35763 ( -  16) 

2'87464 ( -  19) 
- 6.30645 ( - 22) 

1.42003 ( - 24) 
- 3.26216 ( -  2 7 )  

7-61431 ( -  30) 
- 1.80052 ( - 32) 

4'30389 ( - 35) 
- 1'03824 ( -  37) 

2'52431 ( - 40) 
-6,17936 (-43)  

1.52172 (-45)  
-3.76713 (-48)  

4.56956 

1.01854 

4.29534 
- 9.33450 

2.07232 
- 4'68008 

1.07177 
- 2'48300 

5.80902 

- 5.73122 

- 2.03926 

- 
- 
- 
- 
- 

18 
19 - 

2.61343 ( -  51) 
6.007 11 ( - 54) - 

- 09) 
- 12) 
- 14) 
- 17)  
- 20) 
- 23) 
- 25) 
- 28) 
- 30) 
- 33) 
- 36) 

9.36967 (-51) 
2.34025 ( - 53) 

= 402.025 = 370.697 E o  = 381.255 

tS 
TABLE 2. Coefficients of $c = C enRZn+1, 

n = o  
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4.2. Range of validity of the series 

Series such as ( 4 . 4 )  have, in general, a limited radius of convergence, and therefore a 
limited utility for description of the physical quantity of interest. There seems to be no 
generalization possible at  the moment, but the limited radius of convergence is often 
due to the presence of a pole or branch point located, in general, in the complex plane 
of the expansion variable (the Rayleigh number in this case). The pole may be of 
physical significance, indicating a point of bifurcation or in some cases the non- 
existence of solutions; it may, however, lie on the imaginary axis, and therefore have no 
physical significance. For examples of all these possibilities, see Van Dyke (1974, 
1977).  The singularity closest to the origin in the complex plane determines the radius 
of convergence, and its nature and location may be determined by the use of a simple 
graphical test due to Domb & Sykes (1957) .  Functions f (x) of the form 

f (x) = constant (1 + x / e J a  ( 4 . 8 ~ )  

will) from the binomial expansion, have Taylor coefficients which behave like 

(4 .8b )  

The coefficients of series like (4 .4 )  will ultimately be dominated by the nearest singu- 
larity, so we expect (4 .8 )  to hold for sufficiently large n. (Here it is implicitly assumed 
that the structure of the solution is indeed that of ( 4 . 8 ~ ) .  See Stewartson (1976) fora 
counter-example and discussion.) The exponent a and the location eo of the singularity 
are determined from the asymptotic behaviour of the Domb-Sykes coefficients an: 

1 da, l+a 
lim a, = -, lim - = -. 

l/n+O €0 l/n-+O Win) €0 

This determination is often done graphically using a Domb-Sykes plot of an versus 1 /n .  
The intercept yields the location of the singularity closest to the origin and the value 
of the exponent can be calculated from the slope as l / n  .+ 0. The coefficients a and eo 
can also be determined with greater accuracy by using higher-order interpolation 
methods to extrapolate to l / n  = 0. Figure 1 shows the Domb-Sykes plot for A = 2. 
For this and the other aspect ratios studied, a square-root singularity (a  = 0.50) is 
found at  a negative value of R2, e.g. eo = R2 = -370.70 for A = 2. (Recall that the 
series for the Nusselt number involves only even powers of the Rayleighnumber ; hence 
x = R2 here.) A singularity lying on the negative real axis, thus corresponding to an 
imaginary Rayleigh number, has no physical significance and unnecessarily limits the 
range of applicability of the series. There are several possible ways in which the radius 
of convergence can be extended, depending on the nature of the singularity. If the first 
singularity is multiplicative a new series for + R2)-* can be formed which has a 
larger radius of convergence. By factorizing out this first singularity it was found that 
the new series has a singularity at the same location with an exponent of -0.50, 
indicating that the first singularity is not multiplicative. Another possibility is that the 
dingularity is additive; however, on subtracting out the first singularity, the new 
series Nu -a,(€, + B2)@50 has a singularity at the same location with an exponent of 
1.50. By continuing this process of subtracting out singularities as long as accuracy 



458 K .  L. Walker and G .  M .  Homsy 

1 In 
FIGURE 1. The Domb-Sykes plot for the series (4.4). 

allowed, i t  was found that each subtraction resulted in a new series with a singularity 
a t  the same location and an exponent equal to the previous value plus one. This 
indicates that the series for the Nusselt number is of the form 

(4.9) N u ( R 2 )  = (R2 + eo)0.5A ( y )  + B(R2),  
where y = R2+e, and A and B are entire functions of their arguments. We have been 
unable to determine the forms ofthe functions A and B, so it is difficult to extract much 
useful information from the series in their original forms. 

The series for the value of the stream function in the core exhibits a singularity of the 
same nature and a t  the same location as does the series for Nu. However, since the 
stream function, is a point quantity, the coefficients are known with less accuracy 
than those for N u  and no relation similar to (4.9) could be ascertained. 

The locations of the singularities are noted in table 1 and in each case occur for such 
low values of R2 ( R  N 20i) that the practical utility of the original series is severely 
limited. We next discuss extensions. 

4.3. Extension of range of validity 
The immediate goal is to extend the radius of convergence of the series. For a complete 
discussion of most of the methods used, the reader is referred to Gaunt & Guttmann 
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1 In 
FIGURE 2. The Domb-Sykes plot for the Euler series (4.11). 

(1974) and Van Dyke (1974, 1977). The Nusselt number series for a rectangular cavity 
with an aspect ratio of two will be discussed first. Unless noted otherwise the discussion 
will refer to the numerical results for M = 30 and N = 20. 

Assirming, as in the present case, that the non-analytic term may be neither sub- 
tracted nor divided out, it  is common to use the Euler transformation to map the 
nearest singularity to infinity. Thus by definition of the new (‘Euler ’) variable 

2 = R2/(R2+E0), (4.10) 

a new series may be determined; e.g. 

NU = Zd,z”, (4.11) 

where the d, are determined from the c ,  by comparing the two series (4.1 1 )  and (4.4). 
The properties of the series (4.11) are now of interest. We have used variations of 
three techniques to study (4.11). 

First, figure 2 shows the Domb-Sykes plot for this series. It is seen that the extra- 
polation to l / n  = 0 indicates an intercept of nearly 1.0. (In the Euler variable, R2 = co 
corresponds to z = 1 ; if this is the location of the next singularity, it indicates extension 
of the original series to R = co.) It is at  this point that the limited accuracy of the d,, 
due to the truncated spectral representations, makes itself felt. In  fact, we shall see 
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( M ,  N )  Linear Quadratic Cubic 

(20,121 0.99694 0,99868 0.99914 
( 2 4 , ~  0.99740 0.99923 0.99968 
(30,201 0.99776 0.99971 1.0002 

TABLE 3. Intercepts of Domb-Sykes plots of Euler series for 
Nu(z)  (up to order R%). 

the numerical accuracy degenerate as we attempt to determine respectively the 
location, nature and amplitude of the next singularity. 

Table 3 gives the results of analysis of the intercepts from the Domb-Sykes plot? for 
series valid up to RSa, with the intercepts evaluated by linear, quadratic and cubic fits 
to the last points. It is seen that, as the spectral resolution increases, the estimatesof the 
intercept approach 1.0, and it is therefore possible to conclude that, to the available 
numerical accuracy, the Euler transformation extends the radius of convergence of 
(4.4) t o  all Rayleigh numbers. 

At this point we may state a restricted result regarding bifurcations. Since the 
Nusselt number (and indeed other point quantities such as the stream function at  the 
cavity centre) is a single-valued function of R2, one may conclude that there are no 
steady two-dimensional flows which bifurcate from the unicellular flow computed here. 
This is not to say, however, that this flow is stable for all R, since the restricted result 
makes no statement regarding bifurcations to time-dependent or three-dimensional 
motions. 

Even though the radius of convergence has been extended to a very large if not 
infinite Rayleigh number, the utility of the Euler series (4.11) for direct evaluation of 
the heat transport is severely limited. The reason for this is the slow convergence of 
(4.1 I )  for Rayleigh numbers of physical interest, i.e. for z approaching 1 .  The analytical 
nature of the singularity at  infinity is therefore of some interest. If we assume that the 
series (4.1 1) does converge for 0 < z < 1 and that the asymptotic form is algebraic, i.e. 

N u - ( l - ~ ) ~  as 2 3 1 ,  (4.12a) 

then we see that in terms of the physical variables 

Nu - e:R-za as R-tco. (4.1 2 b )  

The exponent a and the leading constant in (4.12b) are therefore of great interest. 
We first discuss the exponent a. Of course the straightforward way of determining a is 
by evaluating the slope of the Domb-Sykes plot, figure 2. This proved to be difficult to 
do accurately, however, because of numerical inaccuracies due to the truncated 
spectral representations. The Domb-Sykes plots exhibit a mild curvature at low l ln  
which seems to be related to the number of terms in the expansion in both R and 
Fourier modes. For example, the estimates for a at orders R3O, R36, R4O are 

- 0.257, - 0.251, - 0.249, 

respectively, for linear extrapolations, 

- 0.227, - 0.226, - 0.226 

for quadratic extrapolations and 

- 0.224, - 0.225, - 0.226 
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for cubic extrapolations for the case M = 30, N = 20. At O(R30), for a coarser spectral 
representation, M = 24, N = 16, we find estimates of 

- 0.254, - 0.220, - 0.21 1 

for linear, quadratic and cubic extrapolations. Thus it is difficult to determine a in as 
satisfactory a manner as we should like. 

Another method commonly used to determine the exponent of algebraic forms 
involves the use of the logarithmic derivative of the Euler series (4.1 1 ); see, for example, 
Gaunt & Guttman (1974) and Van Dyke (1978). From ( 4 . 1 2 ~ )  i t  is easy to see that 

a 
as z + l  

d 
- h ( l  - z ) a  N - 
dz 1 - 2  

(4.13) 

and the singularity at  infinity becomes a simple pole. The series formed by taking 
d[ln (4.1 l)]/dz exhibited a straight Domb-Sykes plot with intercept 1.0 k 0.00001 and 
a slope - 0.992 (compared with the expected value of - 1). The constant a may then 
be estimated by computing the ratio of the coefficients of the logarithmic derivative of 
(4.11) to those of the binomial expansion of (1  - z)-l. This results in estimates (at B30) of 

- 0.231, - 0.234, - 0.232 

from linear, quadratic and cubic extrapolations, respectively. Attempts to use Pad6 
approximants to mimic (4.13) led to erratic estimates for a which did not provide 
support for any particular value. 

All the evidence, taken together, supports a value for a between - 0.25 and - 0.23. 
Without the benefit of any further information, we should be led to accept a value 
slightly less than - ). However, asymptotic analysis in terms of boundary-layer 
theory ( Q  5 )  supports the value of - 4, indicating that the Nusselt number goes as 
Rt for large R; cf. (4.l2b). Giving the corroborating boundary-layer theory, we thus 
conclude that a = - 4  and that the numerical inaccuracies are due to the limited 
spectral representation in the higher terms in the expansion in R. 

Having determined that the Euler series for the Nusselt number has a singularity at 
z = 1 (R = co) and is asymptotic to (1 - z ) - i ,  it  remains to estimate the leading 
numerical coefficient, often called the 'amplitude'; see Gaunt & Guttman (1974). In 
what follows we refer to the amplitude as the coefficient written in the physical 
variables, i..e. we write 

N u = h R &  as R-tco (4.14) 

and estimate h. 
The amplitude of the square-root singularity at  infinity can be determined using 

either the Euler series or Pad6 approximants of the original series. In  the first method, 
one forms the ratio of the Euler coefficients d, in (4.11) to those of the binomial 
expansion of (1 - z)-" These estimates, expressed as h, are given in table 4, together 
with results for other values of A ,  and clearly converge to a value near 0.357 for A = 2. 
These data extrapolate to 0.36 & 0-005. 

The amplitude can also be estimated using the [ N  + 1 / N ]  Pad6 approximant to the 
fourth power of the original series (4.4), i.e. 

NUQN+l,NI = P N f l ( X ) / ! l N ( X )  where x = R2, (4.15) 
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A = l  
ts (20,201 

1 0.3057 
5 0.3682 
10 0.4007 
15 0.4190 
20 0.4302 
25 0.4373 

A = 2  
(30, 20) 
0.3103 
0.3488 
0.3560 
0.3574 
0-3574 - 

TABLE 4. Estimates of amplitude h. 

A = 3  
(20, 20) 
0.2272 
0.2892 
0.3058 
0.3080 

where p ( x )  and q(x) are polynomial functions of their arguments with coefficients 
chosen such that (4.15) agrees with the series (4.4) raised to the fourth power to order 
QS in x. By working with Nu4, the correct asymptotic behaviour is guaranteed. The 
amplitude is then estimated as the ratio of the coefficient of the highest power of x in 
P ~ + ~ ( X )  to that in q N ( x ) .  The idea behind this approach has been suggested by Baker 
(1  965) and recently amplified by Frost & Harper (1 976)) who give many examples. We 
had only limited success with the method for this problem. The estimates for h based 
on [6/5], [7/6], etc. approximants were 0.312, 0.315, 0.317, 0.318 and 0.319, indicating 
that they converge slowly, if at  all. A sensitivity analysis was performed and it was 
found that the behaviour of the [N + 1/N] approximants was extremely sensitive to 
small errors in the higher coefficients of the series for Nu4. 

It is possible, of course, to construct Pad6 approximants for N u  provided that both 
the amplitude and the strength of the singularity at  infinity are known. This involves 
solution of a set of (often ill-conditioned) linear equations; see Frost & Harper (1976). 
The results have great utility in engineering work, providing a closed-form rational 
fraction for N u ( R )  which may be easily evaluated. 

In  addition, the Nusselt number may be calculated directly from the truncated 
Euler series provided that z is not close to 1. For large R, resulting in x -+ 1, we may 
also attempt to complete the series by construction of a 'mimic' function; see Van 
Dyke (1974) and Gaunt & Guttman (1974). A truncated series with S terms can be 
completed by assuming that the remaining terms are proportional to the coefficients 
of the series representation of a function chosen t o  correspond to a prescribed asym- 
ptotic behaviour. A slight disadvantage is that the mimic function takes on an ampli- 
tude determined entirely by the value of the last coefficient in the Euler series; see 
Van Dyke (1974, $5.2) .  When the series is reasonably well behaved this is not a problem, 
but in some cases (see table 4) one loses the benefit of extrapolation. On the basis of the 
above discussion, the mimic function for A = 2 is 

zn 
NU = 0.357( 1 - ~ ) - a  + C dsz". 

s=o  
(4.16) 

We shall compare the mimic function, the Pad6 approximants and the available 
numerical calculations in 0 4.5 below. 

4.4. Stream function 

Another quantity of interest is the value of the stream function at  the cavity centre 
and its dependence on R. The centre value of the stream function is related to the 
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circulation which is driven by the buoyancy. As mentioned earlier, the fact that the 
coefficients in the series for the stream function are known to less accuracy than those 
in the Nusselt number series makes an analysis of the asymptotic behaviour more 
difficult. We shall again discuss the case A = 2, ( M ,  N )  = (30,20) for definiteness. It is 
convenient to treat the series for $JB obtained from (4.5)) i.e. 

4s $/R = enxm where x = R2. 
n=O 

(4.17) 

This series has a branch cut of the same nature and at  the same location as does the 
series for the Nusselt number. As before, an Euler transformation is used to extend the 
radius of convergence. The resulting Euler series has a singularity a t  z = 1.001 and 
again with increased accuracy this singularity moves closer to z = 1,  leading to the 
conclusion that the Euler series has a radius of convergence of infinity in the physical 
variable. Subsequent determination of the exponent of the singularity and its ampli- 
tude by any of the techniques described above proved difficult to accomplish to any 
satisfactory degree. For example the last few estimates of the slope from the Domb- 
Sykes plots were (up to B3*) 

whereas the logarithmic derivative gave, for the same quantity, 

0.48, 0.41, 0.35, 0.29, 

0.192, 0.192, 0.193, 0.194 

and the [ N / N  + 11 Pad6 approximants yielded (recall that the singularity is a simple 
pole, which accounts for the choice of order of the approximants) 

0.1 95, 0.202, 0.207, 0.21 2. 

All these data suggest, but certainly do not conclusively indicate, a value of 4, which 

(4.18) would imply that $(&, &A) N kRt as R -+GO. 

We do not have the numerical accuracy necessary to prove (4.18). It will emerge 
below, however, that this asymptotic behaviour for $ ( + , i A )  is consistent with a 
boundary-layer model due to Gill (1966) and Weber (1975) and refined by us. 

The amplitude k corresponding to the asymptotic form was estimated as 

1.048, 1.071, 1,096, 1-11 

by forming the ratios of Euler coefficients to corresponding coefficients in the expansion 
of (1  - 2)'. The amplitude was also estimated by [ N / N  + 11 Pad6 approximants for 
the series for ($/A)* and yielded 

0-896, 0.912, 0.925, 0.935, 

which are slightly lower than, but consistent with, the values given above. 

4.5. Summary of results 

The discussion up to this point has almost entirely concerned the Nusselt number for 
a cavity of aspect ratio 2. We now briefly discuss other quantities and other aspect 
ratios, and compare the predictions with available numerical results. 

For other aspect ratios, the asymptotic behaviour proved difficult to determine. 
Refer, for example, to table 4. The need for greater accuracy and more terms is 
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k 
A 

-l 

A h Pad6 Domb-Sykes 

1 0.47 0.66 0.41 
2 0.360 1.00 0.8 
3 0.31 1.26 0.9 

TABLE 5. Amplitudes h and k for asymptotic behaviour of Nu and @c respectively. 

R Mimic function Pad6 Finite difference 

200 4.84 
500 8.4 

1000 12.49 

25 2.79 

50 3.95 
100 5.90 

500 14.67 

- - 

- - 

1000 21.3 

t Horne (1975). 
$ Chan el al. (1970). 

A = l  

1.38 l-llt 

1.98 1.99t 
- 1.371 

- 2.151 
- 2.34s 
- 2.1* 

3.097 3.561 
3.5* 

4.89 4 4 9 t  
8.66 8.78.t 

12-96 - 
A = 2  

2.79 2.84t 
- 2*86$ 

3.95 4.31 
5.90 6 . l t  
- 6.71 

14.67 15.6t 
21.4 - 

* Bankvall (1974). 
Holst & Aziz (197%). 

TABLE 6. Comparison of Nusselt numbers computed by different methods. 

probably due to increased importance of other singularities at z = 1.  A boundary- 
layer analysis (§ 5)  predicts that 

A probable choice for the gauge functions is (see below) 

and in terms of the Euler variable this corresponds to 

The magnitude of aAlr compared with ao, especially for small 41, will determine how 
many terms in the Rayleigh number expansion are needed in order to observe the Rt 
dependence. Table 5 succinctly summarizes the results regarding the asymptotic 
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O(R2) 
Regular expansion 
Equation (3.19) with 
c, = - 9.937494 x 10-3 

A = )  A = +  

2.28485 ( -  6) 
2'28475 ( -  6) 

5.15194 ( -  6)  
5.15207 ( -  6) 

O ( R 9  
Regular expansion - 2.83982 ( - 10) - 9.8178 ( -  12) e6 using (3.19) 0.9993 ( - 4 )  1.0012 ( -4)  

TABLE 7. Coefficients of N u / A  at O(R2)  and O ( R 4 )  for small A.  ( M ,  N )  = (16,SS). 

behaviour of both the stream function a t  the cavity centre and the Nusselt number. 
The preceding discussion has amply indicated the poor accuracy of the former 
quantity: we have had to rely on extrapolation techniques and for this reason we give 
results for the amplitude k obtained both from Pad6 approximants of the original 
series and Domb-Sykes coefficients from the Euler series. The discrepancy is a measure 
of the uncertainty in this quantity. Table 6 gives a summary of our results for the 
Nusselt number a t  various values of R and a comparison with available numerical 
results of Home (1975), Holst & Aziz (1972), Chan et al. (1970) and Bankvall (1974). 
In making this comparison, we point out that with the exception of that by Horne, 
who used up to 33 x 65 points, these numerical computations were done on extremely 
coarse grids (typically 10 x 10 points) and become suspect for moderate R. It is a 
general feature of these numerical results that N u  decreases with increasing resolution. 
For R < 100, our results are in substantial agreement with previous work. For R > 500 
there are no reliable numerical results. Our results obtained using the mimic function 
and the Pad6 approximants (chosen to have the correct asymptotic behaviour as 
R -+ co) are in agreement for moderate R, but diverge slightly a t  large R. This is 
because mimic functions such as (4.16) are unduly sensitive to the value of the last 
Euler coefficient and do not benefit from the extrapolation implied in the values of h 
recorded in table 5 .  

4.6. A numerical evaluation of 4 
We now wish to return briefly to the discussion in 9 3, where we developed asymptotic 
results for shallow cavities in the limit A -+ 0 with R fixed. The main result is (3.19), 
which expresses the Nusselt number as an asymptotic expansion in A .  It is seen that 
the series formally breaks down when R4A6 = O(1). We can, of course, treat the 
problem through regular expansions in R with A smaIl, but fixed, to verify (3.19) and 
evaluate the coefficient c5 numerically. This was done by using very high spectral 
representations in (4.3), but taking the expansion in R only to O(R4). Table 7 verifies 
that the O(R2) coefficient is accurately reproduced by the regular expansion series, 
and examination of the coefficient of R4 as a function of A and comparison with the 
expected form from (3.19) show that c5 z 1.000 x This completes the solution for 
shallow cavities up to O(A6).  

16 FLM 87 
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5. A consistent boundary-layer theory 
This section discusses the cavity problem in the limit of infinite Rayleigh number 

and finite aspect ratio in the context of boundary-layer theory. For this case we 
are performing an expansion about 1/R = 0, in contrast to R = 0 for the regular 
expansion and A = 0 for the singular expansion in the two previous sections. As the 
Rayleigh number tends towards infinity the heat transfer between the two vertical 
walls is dominated by convection. Heat transfer by conduction is assumed to be 
important only in thin boundary layers adjacent to the horizontal and vertical walls. 

There has been a small amount of previous work on the boundary-layer limit, 
notably by Gill (1966) for a cavity containing a viscous fluid. His theory, in ad1 its 
essential details, has been carried over to the porous cavity by Weber (1975). The 
theory as developed there suffers from two shortcomings. The first is that no attempt is 
made to link the solution valid in boundary layers near the vertical walls to the details 
of the flow across the horizontal surfaces. Plausible arguments leading to  the con- 
clusion that the flux of fluid is carried entirely by the cross-flow in core regions have 
been given by Gill (1  966), used by Weber (1 975) and recently discussed by Quon (1977). 
The ambiguity regarding the inability to construct a self-consistent boundary-layer 
theory which includes the horizontal layers has led previous workers to conclude, 
incorrectly, that the theory is valid only in the double limit A -+ 00, R --f CO, in which 
case consideration of the horizontal surfaces becomes a moot point. Below we develop 
such a self-consistent theory for a porous cavity valid in the limit of R --f co with A 
fixed. Similar considerations should be possible for a viscous fluid. 

The second shortcoming of the Gill-Weber theory is the crude manner in which the 
boundary-layer equations were integrated. Thus it is difficult to explain unambiguously 
discrepancies between theory and either experiment or numerical work; see especially 
Quon (1977). Below we integrate the boundary-layer equations numerically: this is a 
straightforward and routine calculation. 

It is convenient, though not necessary, to change the scalings of the dimensionless 
variables somewhat. We scale all lengths with respect to the height and rescale the 
temperature such that it varies from 1 a t  the left boundary to 0 at the right. Thus we 
have vz$ = -RHez, v w =  $,e,-$,eal, (5.1 a, b )  

i 
J 

$ =  0, aO/ay=O on y =  0 , 1 ,  

8 = 1 ,  $ = 0  on x = O ,  
= 0, $ = 0 on x = l / A .  

We proceed to construct boundary-layer solutions to  the problem by first deter- 
mining the scalings appropriate to the side-wall layers. Next we discuss allowable 
forms of the 'core' variables, valid in regions removed from boundaries, and the 
coupling between them and the vertical boundary-layer equations. We next demon- 
strate the ability to construct a self-consistent closure which includes horizontal layers, 
and close with some numerical results and comparisons with previous work. 

The magnitudes of the characteristic horizontal length and stream function in the 
vertical boundary layer can be determined in the usual way by balancing convection 
and conduction in (5.1 b ) ,  balancing buoyancy and vorticity in (5.1 a), and assuming 
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that the variation in the x direction is much more rapid than that in the vertical 
direction. It is found that 

a p x  = o(R&), @ = o(R&), 

yielding the usual boundary-layer equations 

y X x  = -ex, exx = ~ ~ e ~ - ~ ~ o ~  ( 5 . 3 ~ )  b )  

8=1 ,  Y=O on X = O ,  (5.4) 

together with matching conditions valid as X 3 co and a consistent initial condition 
on 6 and Y at y = 0. Because of the centro-symmetry, it  suffices to treat the vertical 
layer near x = 0. Here Y and X are boundary-layer variables related to @ and x through 
the scalings Rh and Rj$ respectively. These equations are valid near the vertical 
surfaces except at distances of order R;;" ( E  > 0 )  from the corners, where the assump- 
tion that the characteristic horizontal length is much smaller than the characteristic 
vertical length does not hold. From the scalings used it can be seen that the vertical 
boundary layer will provide an O(Rh) contribution to the Nusselt number. Since the 
vertical characteristic length in the corners is vanishingly small compared with that 
for the boundary layer, it  is expected that the corners will give a higher-order correction 
to the Nusselt number. Thus if one determines the temperature distribution in the 
boundary layer, it is then possible to calculate the Nusselt number to O(Rh). The side- 
wall solution is of course coupled to the core solution, valid as X -+ co, and dependent 
upon the prescribed initial data at  y = 0. We first consider the core variables. 

The core region is studied by expressing the core functions as asymptotic expansions: 

The choice of the gauge functions is not obvious at this point, but is dictated by the 
form of the horizontal layers. We confine our attention to the leading terms in (5 .5 ) ,  
denoted simply by the superscript c.  

It is assumed that the characteristic horizontal and vertical lengths are both order 
one (specifically a/ax N 1/A, a/ay N 1). Substituting the expansions into the governing 
equations and equating terms of order Rk, it is found that 

0; = 0) Y;e; = 0, 

which implies 6" = OC(y), YC = Y"(y). 

(5.6a, b )  

(5.7) 

Owing to the centro-symmetry of the equations, OC must be odd in y and \rc must be 
even about the cavity centre y = 4, or 

eyy) = I -eyi -$I, yyY) = Y C ( ~  -9). 

This is the only information yielded by the core equations ; thus the matching condi- 
tions appropriate to (5.3) are 

6-+Br(y) ,  Yx+ 0 as X+co, (5.8) 

where &(y) must be specified. (Note this problem has the feature common to boundary 
layers that the entrainment velocity, related to Yc(y), cannot be specified, but is 
obtained as a result of calculation.) 

16-2 
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The class of admissible core temperature profiles and the initial data a t  y = 0 are 
intimately connected with the details of the horizontal layers. It is not our intention 
to give an exhaustive treatment of this problem, but we have considered what is 
perhaps the simplest model for the structure. In  this model, the convective flux of 
fluid driven by the buoyancy is carried entirely by the cross-flow in the core. Thus 
Yc(0) = Yc(l) = 0 is a constraint on the solution.? Without going into extensive detail 
(but see the discussion following (5.10) below), it is possible to show that the only core 
temperature profile compatible with this hypothesis is one in which the temperature 
of the fluid along the horizontal walls of the cavity is the same as that of the vertical 
surface from which i t  has just exited. In the present context, this implies that 

OC(0) = 0,  @(l) = 1.  (5.9) 

Thus we are led to consider for @(y) the class of odd functions satisfying (5.9). This 
function will, in general, have a non-zero derivative at  the top and bottom of the 
cavity; thus [aBc/ayJ1/=o, is an O(1) quantity. For consistency, this necessitates a thin 
horizontal layer in which convection balances conduction in order that the temperature 
gradient may vary from zero on the surface to an order-one value to match with the 
core solution. With the scalings 

(5.10) 

for the bottom layer, a balance between conduction and convection yields 

Rg-Y@. YY = R&+a-Y[@ l]yf -Of YgJ], 

which implies that a = p. (Conduction is of course the physical mechanism which 
permits the transition in the slope of the temperature.) Now the matching condition 

(5.11) 

requires y = a, and hence a! = p = y. The vorticity equation in this layer is 

R 2 a f P y ? f  = R'-?@ 

A balance between vorticity and its production then results in a = p = y = a. Thus 
the mass flux and the temperature in this horizontal layer are both smaller, by a factor 
of R-b., than they are in the core. The fact that the equations in this horizontal layer 
are of fourth order in y" indicates the ability to solve them subject to the boundary con- 
ditions at  y" = 0 and matching conditions with the core as y"+ co. The fact that this can 
be accomplished, at  least in principle, lends support to the main hypothesis and (5.9). 
We need not discuss the horizontal layers in further detail, since they do not affect our 
analysis to leading order, but we do wish t o  comment that further progress would 
appear to require not only higher-order boundary-layer theory in the core and vertical 
layers, but also consideration of the small O(Rj$) x O(R& corner regions of overlap 
between vertical and horizontal layers. 

To summarize, we postulate a model in which the flux of fluid is conveyed entirely 
by entrainment and detrainment in the vertical layers. (The boundary layer 'empties ), 

YY 

t We refer to this assumption as the main hypothesis. It is the same as that used by Gill, but 
we go one step further in showing that it is fully consist,ent with a structure for the horizontal 
layers and with 'exact ' numerical calculations. 
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to use Gill's phrase.) This in turn leads to the conclusion that the core temperature 
profile must obey (5.9). The 0 ( 1 )  discontinuity in the temperature gradient at  the top 
and bottom is relaxed by relatively thick, O ( @ )  layers in which the temperature and 
stream function are both of higher order in an expansion in RE& than the leading terms 
in the core and side-wall layers. Xelf-consistency of the model then follows if it ispossible 
to find functions Be(y) which are oddin y, satisfyBc(0) = 0 and Sc(l) = 1, buk are other- 
wise arbitrary, and which result, through integration of the vertical boundary-layer 
equations, in predictions for Yc(y) which are symmetric about y = Q and vanish a t  

Returning to  the vertical layers, it  is possible to eliminate the temperature by first 
y = 0, 1.  

integrating the momentum equation once to give 

yx = -e+tqy) (5.12) 

and substituting into the energy equation to obtain for Y 

I Y, = Bc(y)-l, Y = 0 on X = 0, 

Y,=O as X-too .  

(5.13) 

(5.14) 

The method of solving the boundary-layer equations numerically will be discussed 
briefly before addressing the problem of determining the core temperature and initial 
conditions at y = 0. The boundary-layer equations are recast into Blasius co-ordinates 
using a Levy-Lees transformation. The transformed variables and equations are 

(5.15) I (X ,y )  --f ( 7 , ~ )  where 7 = X/y+, 

V7pl7 = Y q / ( Y )  y, fY+(Y$q/ -Y,Y7J + 4 Y - + ( y y ,  

(5.16) 

As is well known, a constant temperature at infinity (Be = constant) yields a similarity 
solution with Y (9, y) = y@4" (y). There is no guarantee, however, that this is the correct 
initial condition for the integration of the vertical layers. As fluid with the temperature 
of the wall from which it came sweeps across the horizontal wall, there is a compression 
of isotherms into the small square regions of dimensions O(Rj$) mentioned above. The 
solution in this corner region then furnishes the true initial condition for the vertical 
layer. Because of the structure of the boundary-layer model and the use of 7, y variables, 
it is probable that the solution near y = 0 will be approximately the similarity solution. 
We compared the solutions obtained using these and other initial data and found that 
the predicted F ( y )  was relatively insensitive to the choice. In  general different initial 
conditions resulted in absolute differences of less than 5 %, except near y = 0. This is 
not surprising since it is characteristic of parabolic equations that the influence of 
initial conditions tends to  die out far from y = 0. In  all the numerical work reported 
here we used the similarity solution to provide the necessary initial data. 

Equation (5.15) was solved numerically using a finite-difference technique, with 
central differences for derivatives with respect to 7 and backward differences for 
derivatives with respect to y.  The method is second-order accurate in both 7 and y. The 
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FIGURE 3. Yc(y) for a linear core temperature. Oc(y) = 0.77y+0.115. 

equation was solved by stepping in y, i.e. the solution a t  y used the solution at  y- Ay 
and y -  2Ay. At a given value of y the solution was found by the following iteration 

(5.17) 
scheme: 

where U = Y?. Discretization results in a tridiagonal system of equations for U3l, and 
Y M  was then found by quadrature. The iteration process was continued until the 
relative difference between two iterations was less than a specified tolerance. The 
boundary condition a t  infinity was applied at  a large but finite value of r )  

ug- = ye;(y) U M +  y3( uy~; f - - l -  U M - ~ U ; ~ )  + &y-3 U M U M - ~ ,  

(7 = YT = I 0  N 15). 

The parameters Ay, AT and qT were varied to ascertain that the solution was inde- 
pendent of these numerical parameters. Because backward differences were used in the 
vertical direction, the initial profile had to be specified at  two rows in order to start the 
calculations. 

We now discuss the choice of the function 8C(y). We first performed some numerical 
experiments to investigate the close coupling between the main hypothesis that 
Yc(0) = Yc(l) = 0 and the conclusion that @ satisfies (5.9). Figure 3 shows the pre- 
dictions for Yc(y) for a profile @(y) = 0.77~ + 0-1 15. (This is the only linear temperature 
profile that results in a symmetric YC.) It is seen that in this case F ( 1 )  + 0, which, if 
accepted, implies that some of the flux is carried by a horizontal layer. But the 
hypothesis Y = O(&) in that layer, together with the scalings discussed after (5.10)) 
leads to the contradictory result that the temperature suffers an O ( i )  jump, which in 
turn implies an O ( R s )  heat flux, which, for a > 0, cannot be relaxed to zero by any 
self-consistent scaling. In  addition, the boundary -layer equations themselves suggest 
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y 

FIGURE 4. Yc(y) for various G and N .  -, N = 4, G = 0.77; 
, N = 2, G = 0 . 7 7 ;  ---, N = 1 ,  G = 1. 

that the main hypothesis implies (5.9)) since as 0, --f 1.0 (5.16) become homogeneous, 
which suggests that, as the circulation loses the buoyancy which drives it, i t  should 
relax to zero. 

The core temperature profile, in addition to being antisymmetric about y = 3 and 
varying between zero and one, must also be chosen such that the resulting core stream 
function is symmetric. The symmetry of the stream function was found to be strongly 
dependent on the shape of the assumed core temperature profile. We examined the 
family of odd polynomials of the form 

8' - &[ 1 + G( 2y - 1 ) + (1 - G) (2y - 1 )2N"] (5.18) 

for various N and G.f Here G is the value of the gradient a t  the centre. As N increases, 
the deviation from a linear profile becomes more and more localized near the two 
horizontal surfaces. Figure 4 shows a few of the calculated results for Ye for various 
N and G. For a symmetric profile the maximum will occur a t  y = &, i.e. the boundary 
layer entrains fluid in the lower half of the cavity and ejects fluid in the upper half. The 
location of the maximum was found to depend primarily on the temperature gradient 
in the centre of the cavity and only weakly on the shape of the core temperature profile 
or on the initial conditions. A value of G approximately equal to 0.75 results in the 
maximum being located at y = 4. This choice also results in stream-function profiles 
that are nearly symmetric except near the horizontal surfaces. For fixed G, we varied 

t A few solutions using complete sets of odd polynomials yielded essentially the same results 
as (5.18). 
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N in order to find the value resulting in a nearly symmetric Yc(y). The best choice was 
found to be N = 4. 

Having found a self-consistent boundary-layer solution, it is possible to evaluate 
both the value of the stream function a t  the cavity centre (direckly from figure 4) and 
the Nusselt number (obtained by numerical quadrature). We find, therefore, the 
asymptotic results 

as R -f 00, with A fixed. (5.19) I NU = (0.51 0.01) RaA-4 

Yc = - (0.733 & 0.003) A#R& 

[a6c/ay]y=o = 0.75 

(Note that we have reverted to R, which is based upon L, for comparison with certain 
of the results from earlier sections.) 

The results for the Nusselt number and the centre value of the stream function are 
in good agreement with the results from the regular expansion for A = 2 and 3 (see 
table 6). The discrepancy for an aspect ratio of one is thought to be due to the difficulties 
in extracting the asymptotic limit from the regular expansion. The results can also be 
compared with those of Weber (1975). For the quantities in (5.19), he found 

NU = 0-58RaA-4, y.’C = 0-87AiR4, [aBc/ayJy=o = 8, 

which, while inaccurate, are surprisingly close to our values considering the approxi- 
mations which he made. 

The most detailed experimental study is that by Klarsfeld (1970). Using the so-called 
‘Christiansen effect’ (see, for example, Cloupeau & Klarsfeld 1973), by which the 
isotherms may be determined using colour photography, he presented results for a 
heated cavity over the range 40 < R < 1622 for two aspect ratios: A = 2.25 and 4.5. 
His results clearly show the boundary-layer regime for R, > 700 and dramatically 
demonstrate the existence of the thick, O(Rj$) horizont,al layers. For the highest 
Rayleigh numbers which he studied, the isotherms away from the horizontal walls are 
nearly flat and the core temperature profile is in excellent agreement with that deter- 
mined here. In  figure 5 we have plotted his experimental points together with (5.18) 
with G = 0.75 and N = 4. The agreement is exact to wit,hin the accuracy of the 
experiments. 

We wish to thank Professor Milton Van Dyke for helpful discussions on the content 
of Q 4, Professor Andreas Acrivos for his characteristically clever resolution, via (3.17)) 
of what initially seemed to us to be a paradox and Professor R. Horne for discussions 
of his numerical calculations. Financial support through NSF-ENG-73-03955 is 
gratefully acknowledged. 

Appendix. Accuracy of regular expansion 
It was not our intention to make a detailed comparison of various methods of 

solving the sequence of Poisson problems arising in 0 4. There exist, for example, more 
efficient ways of evaluating the nonlinear source terms using fast Fourier transforms 
and a discrete set of points in physical space. Accuracy, not speed, was our main 
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FIGURE 5. Oc(y) compared with experiments. 0 ,  A = 2.25, 
R = 1622; 0, A = 2.25, R = 1298. 

Direct Poisson solver Galerkin 
A r A > \ 

Mesh Spectral 
el resolution size el 

8 x 1 6  1.13426 ( -  01) - - 
16 x 32 1'13760 ( -01)  ( 2 4 , ~  1.13806 ( -  01) 
32 x 64 1'13844 ( -  01) (30,20) 1.13842 ( -  01) 

e2 e2 

8 x 1 6  - 2'12949 ( -  05) - - 
16 x 32 - 2.14441 ( - 05) (24, 16) -2.1365 (-05) 
32 x 64 - 2'14674 ( - 05) ( 3 0 , ~  - 2.14162 ( - 05) 

e3 e3 
8 x  16 1.4331 ( -  08)  - - 

16 x 32 1.8766 ( -  08) (24,161 2.29225 ( - 08) 
32 x 64 2.0998 ( - 08) (30,201 2.30308 ( - 08) 

C2 Ca 

- - (12,12) 9'18305 ( - 04) 
8 x 1 6  1.0024 ( - 03) (16, 16) 9.18349 ( -  04) 

16 x 32 9.4220 ( - 04) ( 2 4 , ~  9.18355 (-04) 
32 x 64 9.2468 ( - 04) (30, 20) 9.18364 ( -04)  

c3 c3 

- - (12, 12) - 8'3089 ( - 07) 
8 x  16 - 4'4897 ( - 07) (16, 16) - 8.3036 ( - 07) 

16 x 32 - 6.30584 ( - 07) ( 2 4 , ~  - 8.3007 ( - 07) 
32 x 64 - 7.31308 (-07) ( 3 0 , ~  - 8.3002 ( - 07) 

TABLE 8. Comparison of finite-difference with direct (Galerkin) evaluation. A = 2. 
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consideration, so we did not explore this possibility. We did, however, make a brief 
comparison with finite-difference techniques which exploit the availability of direct 
Poisson solvers to invert the resulting matrices directly. These were, in general, 
disappointing. Table 8 gives results of a few trials on the first few c, and en from (4.4) 
and (4.5). Even with Richardson extrapolation, the direct methods and fourth-order- 
accurate finite differences did not yield comparable accuracy for a comparable 
computation time. (A direct 32 x 64 Poisson solve took about as much time a.s direct 
evaluation using (31, N )  = (30,20) spectral resolution.) The comparison in table 8 also 
gives a measure of the accuracy obtained by the direct evaluation. 
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